
Tessy
Automated dynamic module/unit testing

for embedded applications CTE
Classification Tree Editor

for test case specifications

Automated module/unit testing
and debugging at its best

Tessy – The Invaluable Test Tool

Tessy performs automated dynamic module/unit
testing of embedded software and determines the code
coverage along the way. This kind of test is required for
certifications according to standards such as DO-178B or
IEC 61508.

The Classification Tree Editor (CTE) provides one method
of systematically specifying and generating test cases.
It makes use of the Classification Tree Method to do this,
and is a unique feature to Tessy.

Key Features
> Automated test execution
> Test report generation
> Code coverage without extra effort
> Regression and integration testing
> Essential to get certifications
> For geographically distributed projects
> Testing on host or actual hardware
> Supports C and C++
> Fastens development – pays off quickly

www.hitex.com/perm/tessy.html

Tessy automatically executes the tests, evaluates the test
results, and generates the test reports.

Tessy can eliminate manual testing and therefore saves
the embedded development engineer a tremendous
amount of time. A faster development process ensures
the tool recovers its costs quickly, and what‘s more,
produces better quality software and documented tests.

Tests can be executed on the development host or on the
actual target hardware.

Tessy is successfully used in large projects with dozens of
users in multiple locations across the world. Tessy is used
extensively in automotive, aerospace, avionics, railway,
medical, military, and industrial applications. Ask for a
testimonial!

Regression testing is a key feature in achieving software
quality and Tessy is the perfect tool for this task.

Tessy helps developing safety critical
applications and devices

What Is Module/Unit Testing?

During unit testing of C programs, a single C-level
function is tested rigorously and in isolation from the
rest of the application. Often unit testing is also called
module testing.

Rigorous means that the test cases are specially made
for the unit in question and that they comprise of input
data that may be unexpected by the unit under test.
Isolated means that the test result does not depend on
the behavior of the other units in the application. It can
be achieved by directly calling the unit under test and
replacing calls to other units by stub functions.

What Are The Benefits Of
Module/Unit Testing?

Reduces Complexity of Test Case Specification
Instead of trying to create test cases that test the whole
set of interacting units, the test cases for unit testing
are specific to the unit under test (divide-and-conquer).
Test cases can easily comprise of input data that is
unexpected by the unit under test, something which is
hard to achieve during system testing.

Easy Fault Isolation
If the unit under test is tested in isolation from the other
units, detecting the cause of a failed test case is easy. The
fault must be related to the unit under test, and not to a
unit further down the calling hierarchy.

Finds Errors Early
Unit testing can be conducted as soon as the unit to be
tested compiles successfully. Therefore errors inside the
unit can be detected very early.

Saves Money
It is generally accepted that errors detected late in a
project are more expensive to correct than errors that
are detected early. Hence unit testing saves money.

Gives Confidence
Unit testing gives confidence. After the unit testing, the
application will be made up of single, fully tested units.
A test for the whole application will then be more likely
to pass.

Systematic, rigorous
and isolated testing

Unit testing eliminates errors early on
and prevents them from showing up in later stages

 of the development process.

Test data can be entered interactively in
the Test Data Editor (TDE)

The interface separates the test object
from the rest of the application

A tour around the
testing workflow

1. Unleash It For A Test Run

Tessy starts off by analyzing the source module and then
lets the user select the function to be tested. It then
identifies the interface of the test object, such as global
variables, parameters, and functions called by the test
object.

Tessy determines whether a variable is input, output,
or both. The findings are displayed in the Test Interface
Editor (TIE). There Tessy can be directed to allocate
memory to be used as target for pointers in the interface.

2. State Your Case

Tessy provides several ways to specify values for the test
cases.
> Interactive test data input is accomplished by the

wizard-like Test Data Editor (TDE).
> Tessy automatically combines user-supplied values to

test cases. Test cases to cover ranges of values can be
generated easily.

> Test data can be imported from files (Excel workbooks
or plain text files). This allows calculating test data in
Excel or to import recorded test data.

> Test cases generated systematically by use of the
Classification Tree Method can be imported from the
Classification Tree Editor (CTE). Those test cases can
comprise test data.

> Tessy can generate random data.

A test case comprises values for input variables, the
expected results, and how to compare the actual results
with the expected ones to determine if a test has passed
or failed. Deviations of the expected result may be
allowed.

Test reports are generated automatically

3. Meet Your Test Driver

Tessy now generates source code for the test driver,
which calls the function under test. If this function calls
another function, Tessy is able to create a stub function
to replace the called function. This is necessary for unit
testing in its strictest sense and useful if the called
function is not implemented yet.

Tessy provides two types of stub functions:
> One type allows the user to specify expected values

for the input variables of the stub function which
are compared with the actual values by Tessy.
Furthermore this stub function type allows you to
specify the inputs from the stub function to the
function under test, e.g. the return value.

> The other type of stub function allows the user to
provide source code for the body of the stub.

Tessy can also check the order of the stub function calls.

4. Go Tessy Go!

Using a suitable compiler, Tessy compiles and links the
driver source code, the function under test and any stub
functions, and then downloads the resulting executable
to the test system. This might be an in-circuit emulator
in stand-alone mode or one connected to a target
system, or a JTAG / BDM / OCDS debug system. This
might also be a simulation of the target microcontroller
running on the host PC. Testing can also be performed on
the host PC using the native GNU compiler.

Tessy executes each test case and then determines, if it
has passed or failed. A test report will then be created in
configurable levels of detail and in various formats.

Why Tessy
eases testing

Regression Testing –
Did Your Modifications Cause Errors?

Regression testing can reveal if new errors have
been introduced during further development of
the application, such as bug fixes in other sections,
rewriting of the tested function, switching to a new
compiler version or porting the software to another
microcontroller architecture. Tessy’s easy-to-use
regression testing ability is an extremely helpful method
of checking modified software and thus ensuring
software quality.

Batch Testing – Lets You Go Home

Tessy allows the user to run a selected set of test
cases without any user intervention. So an extensive
regression test can be run overnight and the results can
be analyzed the next day.

Integration Testing – Check The Interfaces

Tessy can be used to do some integration testing. This is
done by using the actual units instead of stub functions,
normally in a bottom-up approach to integration testing.

Environment Editor –
Manage Your Configurations

Configurations of Tessy for a certain project can be
created by the use of Tessy’s Environment Editor (TEE).
This enables many users to use the same configuration
easily, what is useful in bigger projects.

Dream Debugging

If a test case fails, an easy and efficient debugging is in
place. Tessy is able to re-execute a test case and direct the
debugger in use to stop test execution at the beginning
of the function under test. The debugger’s features now
can be used to reveal the culprit. After the source code
is changed to fix the bug, the test case in question (and
all others) can easily re-run to verify that the correction
operates successfully.

Tessy eases debugging of a failed test case

Old interface elements can be assigned to
new ones using the Interface Data Assign editor (IDA)

Re-Use Test Data And Save Time

If any interface element of a tested function has been
changed in the course of the development process, Tessy
allows the user to re-use test data from the old interface,
which considerably aids the regression testing process.

Software quality
needs Tessy

Code Coverage – Ensure Everthing’s Tested

Without additional effort, Tessy can determine the
following code coverage measures during the test:
> Branch / Decision Coverage (C1)
> Modified Condition / Decision Coverage (MC/DC)
> Multiple Condition Coverage (MCC).

Tessy’s coverage viewer shows the results. The user can
interactively display the source code related to a certain
branch or decision of the software. This reveals with a
click of the mouse which branch of the software was not
executed during the tests, or which test case did execute
a certain branch of the software.

Also the truth table for conditions of a decision is
displayed. This reveals if any additional test cases are
needed, and if yes, how they should be made up. All
coverage test results are also available as printable
reports.

Supported Microcontrollers

Tessy is adapted to currently more than 130
combinations of microcontroller / cross compiler /
debugger. This ensures that Tessy is able to handle
non-ANSI-C microcontroller-specific code of some cross
compilers. Since Tessy is adapted to various debuggers,
Tessy can execute the test automatically.

The list of supported combinations is extended steadily.
Please check www.hitex.com/perm/tessy.html.

Tessy runs on WindowsNT /2000 / XP and Vista.
Both Tessy and CTE originate from the former software
technology laboratory of Daimler AG in Berlin, Germany.

ASAP2 Files Recognized

Tessy recognizes ASAP2 files, which enables the user to
use physical values (e.g. the temperature in degrees
Celsius) instead of the integer representation (used by
the microcontroller) of that physical value. Additional
information from the ASAP2 file (e.g. unit description,
minimum and maximum values) may be displayed
within the Tessy tools and reports.

Investigating the coverage results is interactive

ASAP support allows using physical test values

CTE And The
Classification Tree Method

The Classification Tree Method supports a developer
confronted with issues such as:

> Finding the ”right” test cases
> Minimizing a set of test cases while assuring

that none are missing
> Estimating the amount of testing required
> Defining criteria needed to conclude testing without

risking integrity of the test process

The Classification Tree Method transforms a problem
specification systematically into a set of error-sensitive,
low-redundancy test cases. This method classifies test-
relevant aspects using the equivalence partitioning
method and leads to test case specifications.

The Classification Tree Editor (CTE) is a graphical tool that
supports the Classification Tree Method. In the upper
window, the classification tree is drawn. In the lower
window, a line in the combination table specifies a test
case. You can annotate information such as descriptions,
references to requirements, expected results to the tree.
Bigger trees may be split into sub-trees. The editor is able
to export test case specifications to Tessy and to files.

Design tests
for confidence

This approach is intuitive and easy to learn. It requires
and encourages the developer to employ their creativity.
Because thinking about the problem specification is at
the very beginning, the Classification Tree Method also
reveals inconsistencies or omissions in the problem
specification.

B0-Tessy.indd O
ct 2008-006

If the CTE is used in conjunction with Tessy, you may
assign values to classes. An assigned value is exported
to Tessy with the test case specification. So test data is
assigned to test cases very efficiently and comfortable.
This speeds up testing a lot.

Although CTE is included in Tessy, its use is not only
limited to embedded systems and it is therefore also
available as a separate product.

Test case specification and test execution
can be separated using Tessy and CTE

Excerpt of a test case specification

